Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-*µ*-chlorido-bis{[(1*H*-benzo[*d*]imidazol-2-vlmethvl)dibenzvlamine]chloridocadmium(II)} ethanol disolvate

Guang-Ju Ping, Jian-Fang Ma* and Lai-Ping Zhang

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Correspondence e-mail: majf247nenu@yahoo.com.cn

Received 22 May 2007; accepted 31 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.027; wR factor = 0.078; data-to-parameter ratio = 20.8.

The title compound, $[Cd_2Cl_4(C_{22}H_{21}N_3)_2]\cdot 2C_2H_6O$, is a centrosymmetric dimer. The Cd^{II} cation shows a distorted tetragonal-pyramidal coordination geometry formed by three Cl⁻ anions and two N atoms. The Cd-Cl_{terminal} bond distance of 2.4591 (7) Å is much shorter than the Cd-Cl_{bridging} bond distances of 2.5604 (6) and 2.6132 (6) Å. The ethanol solvent molecule is hydrogen bonded with the dimeric complex via O-H···Cl hydrogen bonds.

Related literature

The Cd-N1 and Cd-N2 bond distances of 2.4636 (16) and 2.2819 (16) Å are shorter than those found in the literature (Choi & Jeon, 2003; Huang et al., 1998).

Experimental

Crystal data $[Cd_2Cl_4(C_{22}H_{21}N_3)_2] \cdot 2C_2H_6O$ $M_{-} = 1113.58$ Monoclinic, $P2_1/n$ a = 12.6360 (9) Åb = 13.3620 (10) Åc = 15.0200 (11) Å $\beta = 101.955 \ (5)^{\circ}$

V = 2481.0 (3) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 1.12 \text{ mm}^{-1}$ T = 293 (2) K 0.44 \times 0.32 \times 0.19 mm $R_{\rm int} = 0.022$

15017 measured reflections

5827 independent reflections

5067 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.659, T_{\max} = 0.812$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	1 restraint
$wR(F^2) = 0.078$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
5827 reflections	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$
280 parameters	

Table 1

Selected geometric parameters (Å, °).

Cd1-Cl1	2.4591 (7)	Cd1-N1	2.4636 (16)
Cd1-Cl2	2.5604 (6)	Cd1-N2	2.2819 (16)
$Cd1 - Cl2^{i}$	2.6132 (6)		
V2-Cd1-Cl1	105.92 (5)	N1-Cd1-Cl2	150.72 (5)
N2-Cd1-N1	73.73 (6)	N2-Cd1-Cl2 ⁱ	148.17 (5)
Cl1-Cd1-N1	99.07 (4)	Cl1-Cd1-Cl2 ⁱ	102.95 (2)
V2-Cd1-Cl2	96.56 (4)	$N1-Cd1-Cl2^{i}$	88.84 (4)
Cl1-Cd1-Cl2	110.19 (2)	Cl2-Cd1-Cl2 ⁱ	85.712 (19)

Symmetry code: (i) -x + 1, -y, -z

l able 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \text{O1-H1}A\cdots\text{Cl1}^{\text{ii}}\\ \text{N3-H3}N\cdots\text{O1} \end{array}$	0.85	2.33	3.157 (2)	164
	0.88	1.90	2.772 (3)	174

Symmetry code: (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20471014), the Programme for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320), the Fok Ying Tung Education Foundation, the Science Foundation for Young Teachers of NENU (grant No. 20050310) and the Analysis and Testing Foundation of Northeast Normal University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2261).

References

- Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA

Choi, K. Y. & Jeon, Y. M. (2003). Inorg. Chem. Commun. 6, 1294-1296.

Huang, C. F., Wei, H. H., Lee, G. H. & Wang, Y. (1998). Inorg. Chim. Acta, 279, 233-237.

Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m1821-m1822 [doi:10.1107/S1600536807026669]

Di-µ-chlorido-bis{[(1H-benzo[d]imidazol-2-ylmethyl)dibenzylamine]chloridocadmium(II)} ethanol disolvate

G.-J. Ping, J.-F. Ma and L.-P. Zhang

Comment

As part of an investigation of the coordination chemistry of cadmium compounds, we present here the preparation and crystal structure of the title compound.

The title compound is composed of Cd^{II} cations, Cl^{-} anions, 1H-benzo[d]imidazol-2-yl)-N,N-dibenzylmethanamine (L) and solvent ethanol molecules. It is a centrosymmetric dimer (Fig. 1). Two Cd^{II} cations are bridged by two Cl^{-} anions to form a binuclear compound. Each Cd cation shows a distorted tetragonal pyramid geometry formed by three Cl^{-} anions and two N atoms of L. The Cd—N1 and Cd—N2 bond distances (Table 1) are shorter than the values in the literature (Choi & Jeon, 2003; Huang *et al.*, 1998). The Cd—N2 bond distance is much shorter than the Cd—N1 bond distance, indicating comparatively strong coordination. There are hydrogen-bonding interactions in the crystal (Table 2), forming a two-dimensional supramolecular structure (Fig. 2). In addition, solvent ethanol molecules participate in hydrogen-bonding interactions.

Experimental

A mixture of *N*,*N*-dibenzylglycine (10.2 g, 40 mmol) and *o*-phenylenediamine (4.32 g, 40 mmol) in 70 ml e thanediol was reflux for 16 h. The mixture was cooled to room temperature and added in hot water. The mixture was constantly stirred until brown solid was obtained and then filtered. The solid was purified by recrystallized from ethanol-water solution to get ligand *L*. The *L* (0.0654 g, 0.2 mmol) dissolved in hot ethanol (10 ml) was added to a hot ethanol solution (5 ml) of cadmium chloride (0.0457 g, 0.2 mmol). The mixture was stirred at room temperature for 30 min in air and filtered. Crystals suitable for X-ray diffraction were obtained by slow evaporation of the ethanol solution; yield 78%.

Refinement

All H-atoms bound to carbon were refined using a riding model with C—H = 0.93–0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and CH₂, $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃. The imino and hydroxy H atoms were located in a difference Fourier map and refined in riding mode with $U_{iso}(H) = 1.5U_{eq}(O,N)$. The C23—C24 bond distance restraint was used in the refinement for the lattice solvent molecule.

Figures

Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms [symmetry codes: (i) 1 - x, -y, -z.]

Fig. 2. Two-dimensional supra-molecular layers of the title compound formed by hydrogen bonding (dashed lines) [symmetry codes: (i) 1 - x, -y, -z; (ii) 1/2 + x, 0.5 - y, 1/2 + z].

Di-µ-chlorido-bis{[(1H-benzo[d]imidazol-2- ylmethyl)dibenzylamine]chloridocadmium(II)} ethanol disolvate

Crystal data	
$[Cd_2Cl_4(C_{22}H_{21}N_3)_2] \cdot 2C_2H_6O$	$F_{000} = 1128$
$M_r = 1113.58$	$D_{\rm x} = 1.491 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
Hall symbol: -P 2yn	Cell parameters from 5067 reflections
a = 12.6360 (9) Å	$\theta = 1.9-28.3^{\circ}$
b = 13.3620 (10) Å	$\mu = 1.12 \text{ mm}^{-1}$
c = 15.0200 (11) Å	T = 293 (2) K
$\beta = 101.955 (5)^{\circ}$	Block, colorless
V = 2481.0 (3) Å ³	$0.44 \times 0.32 \times 0.19 \text{ mm}$
Z = 2	

Data collection

Bruker APEX CCD area-detector diffractometer	5827 independent reflections
Radiation source: fine-focus sealed tube	5067 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 293(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 16$
$T_{\min} = 0.659, T_{\max} = 0.812$	$k = -16 \rightarrow 15$
15017 measured reflections	$l = -16 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.027$ H-atom parameters constrained $wR(F^2) = 0.078$ $w = 1/[\sigma^2(F_o^2) + (0.0459P)^2 + 0.1798P]$
where $P = (F_o^2 + 2F_c^2)/3$ S = 1.05 $(\Delta/\sigma)_{max} < 0.001$ 5827 reflections $\Delta\rho_{max} = 0.33$ e Å⁻³280 parameters $\Delta\rho_{min} = -0.69$ e Å⁻³1 restraintExtinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	z	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.600334 (11)	0.089731 (12)	0.069920 (10)	0.04431 (7)
C1	1.1986 (2)	0.0283 (2)	0.18405 (19)	0.0673 (7)
H1	1.2728	0.0230	0.2064	0.081*
C2	1.1488 (2)	0.1193 (2)	0.1788 (2)	0.0721 (8)
H2	1.1894	0.1764	0.1974	0.087*
C3	1.03876 (19)	0.1275 (2)	0.14614 (18)	0.0599 (6)
Н3	1.0061	0.1902	0.1427	0.072*
C4	0.97679 (17)	0.04404 (18)	0.11860 (14)	0.0475 (5)
C5	1.02856 (19)	-0.0472 (2)	0.12327 (19)	0.0630 (6)
Н5	0.9886	-0.1045	0.1039	0.076*
C6	1.1384 (2)	-0.0549 (2)	0.1562 (2)	0.0698 (7)
Н6	1.1717	-0.1173	0.1594	0.084*
C7	0.85601 (17)	0.0526 (2)	0.08080 (15)	0.0509 (5)
H7A	0.8422	0.1162	0.0494	0.061*
H7B	0.8350	0.0002	0.0360	0.061*
C8	0.79287 (19)	-0.05625 (19)	0.19035 (17)	0.0544 (5)
H8A	0.8630	-0.0635	0.2308	0.065*
H8B	0.7883	-0.1055	0.1423	0.065*
C9	0.70633 (19)	-0.07780 (16)	0.24284 (16)	0.0506 (5)
C10	0.6041 (2)	-0.10782 (18)	0.19770 (18)	0.0554 (6)
H10	0.5914	-0.1204	0.1355	0.067*
C11	0.7238 (2)	-0.0669 (2)	0.33619 (17)	0.0626 (7)
H11	0.7929	-0.0511	0.3685	0.075*

C12	0.6411 (3)	-0.0787 (2)	0.3826 (2)	0.0705 (8)
H12	0.6544	-0.0705	0.4454	0.085*
C13	0.5391 (3)	-0.1027 (2)	0.3355 (2)	0.0679 (7)
H13	0.4824	-0.1077	0.3660	0.082*
C14	0.5207 (2)	-0.1194 (2)	0.24375 (19)	0.0631 (6)
H14	0.4523	-0.1384	0.2124	0.076*
C15	0.81300 (16)	0.12627 (18)	0.21745 (14)	0.0476 (5)
H15A	0.8329	0.1862	0.1883	0.057*
H15B	0.8747	0.1059	0.2638	0.057*
C16	0.71965 (16)	0.14870 (15)	0.26078 (13)	0.0423 (4)
C17	0.55683 (16)	0.16587 (15)	0.28049 (14)	0.0421 (4)
C18	0.44502 (17)	0.16698 (18)	0.27295 (16)	0.0511 (5)
H18	0.3979	0.1579	0.2171	0.061*
C19	0.4073 (2)	0.1820 (2)	0.35138 (17)	0.0596 (6)
H19	0.3331	0.1810	0.3487	0.072*
C20	0.4769 (2)	0.1985 (2)	0.43447 (17)	0.0620 (6)
H20	0.4479	0.2095	0.4857	0.074*
C21	0.5875 (2)	0.19919 (19)	0.44337 (15)	0.0570 (6)
H21	0.6339	0.2105	0.4992	0.068*
C22	0.62618 (17)	0.18215 (16)	0.36486 (14)	0.0452 (4)
C23	0.8661 (7)	0.0467 (6)	0.5860 (4)	0.222 (4)
H23A	0.8736	0.0380	0.6504	0.332*
H23B	0.8922	-0.0120	0.5605	0.332*
H23C	0.7912	0.0568	0.5585	0.332*
C24	0.9298 (5)	0.1349 (5)	0.5682 (3)	0.154 (2)
H24A	0.9035	0.1939	0.5944	0.184*
H24B	1.0049	0.1253	0.5978	0.184*
01	0.92314 (17)	0.15108 (19)	0.47359 (14)	0.0912 (7)
H1A	0.9779	0.1834	0.4641	0.137*
Cl1	0.64262 (5)	0.23322 (5)	-0.01913 (5)	0.06842 (17)
C12	0.39562 (4)	0.06129 (5)	0.03986 (4)	0.05318 (14)
N1	0.78525 (13)	0.04571 (14)	0.14913 (11)	0.0424 (4)
N2	0.61827 (13)	0.14620 (13)	0.21566 (11)	0.0422 (4)
N3	0.72942 (14)	0.17274 (14)	0.34891 (11)	0.0460 (4)
H3N	0.7914	0.1705	0.3880	0.069*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03532 (10)	0.05476 (12)	0.03982 (10)	-0.00554 (6)	0.00081 (6)	-0.00510 (6)
C1	0.0374 (12)	0.0806 (19)	0.0830 (18)	-0.0039 (11)	0.0106 (11)	0.0061 (14)
C2	0.0450 (13)	0.0689 (17)	0.100 (2)	-0.0172 (12)	0.0087 (14)	-0.0007 (15)
C3	0.0477 (12)	0.0529 (13)	0.0789 (17)	-0.0052 (10)	0.0130 (12)	0.0062 (12)
C4	0.0373 (10)	0.0605 (13)	0.0457 (11)	-0.0042 (9)	0.0112 (8)	-0.0043 (10)
C5	0.0441 (12)	0.0613 (15)	0.0863 (18)	-0.0067 (11)	0.0197 (12)	-0.0190 (13)
C6	0.0483 (14)	0.0669 (16)	0.098 (2)	0.0063 (12)	0.0239 (14)	-0.0003 (15)
C7	0.0378 (11)	0.0697 (14)	0.0448 (11)	-0.0048 (10)	0.0081 (9)	-0.0045 (10)
C8	0.0426 (11)	0.0557 (13)	0.0641 (14)	0.0015 (10)	0.0093 (10)	0.0037 (11)

C9	0.0491 (12)	0.0462 (12)	0.0548 (13)	0.0023 (9)	0.0068 (10)	0.0096 (9)
C10	0.0546 (14)	0.0567 (14)	0.0516 (13)	-0.0081 (10)	0.0033 (10)	0.0082 (10)
C11	0.0643 (16)	0.0635 (15)	0.0542 (14)	-0.0095 (12)	-0.0010 (12)	0.0146 (11)
C12	0.089 (2)	0.0696 (18)	0.0518 (14)	-0.0160 (14)	0.0119 (14)	0.0115 (12)
C13	0.0743 (18)	0.0622 (16)	0.0733 (18)	-0.0058 (12)	0.0292 (15)	0.0162 (13)
C14	0.0540 (14)	0.0633 (15)	0.0700 (16)	-0.0092 (12)	0.0084 (12)	0.0173 (13)
C15	0.0356 (10)	0.0579 (12)	0.0464 (11)	-0.0085 (9)	0.0016 (8)	-0.0071 (10)
C16	0.0376 (10)	0.0461 (11)	0.0411 (10)	-0.0067 (8)	0.0033 (8)	-0.0038 (8)
C17	0.0416 (10)	0.0417 (10)	0.0432 (10)	-0.0036 (8)	0.0091 (8)	-0.0013 (8)
C18	0.0422 (11)	0.0564 (13)	0.0547 (12)	-0.0059 (9)	0.0099 (9)	-0.0063 (10)
C19	0.0518 (13)	0.0645 (15)	0.0681 (15)	-0.0066 (11)	0.0249 (12)	-0.0020 (12)
C20	0.0731 (16)	0.0662 (15)	0.0538 (14)	-0.0031 (12)	0.0296 (12)	0.0013 (11)
C21	0.0696 (15)	0.0607 (14)	0.0409 (11)	-0.0031 (11)	0.0118 (10)	-0.0010 (10)
C22	0.0507 (11)	0.0418 (11)	0.0426 (10)	-0.0052 (9)	0.0085 (9)	0.0009 (8)
C23	0.292 (10)	0.265 (9)	0.113 (5)	-0.084 (8)	0.052 (5)	0.021 (5)
C24	0.159 (5)	0.199 (6)	0.085 (3)	-0.056 (4)	-0.017 (3)	0.013 (3)
O1	0.0719 (13)	0.1151 (19)	0.0731 (13)	-0.0186 (12)	-0.0158 (10)	0.0113 (13)
Cl1	0.0608 (4)	0.0701 (4)	0.0716 (4)	-0.0080 (3)	0.0074 (3)	0.0155 (3)
Cl2	0.0355 (3)	0.0729 (4)	0.0502 (3)	-0.0067 (2)	0.0067 (2)	-0.0181 (3)
N1	0.0341 (8)	0.0499 (10)	0.0420 (9)	-0.0038 (7)	0.0050 (7)	-0.0029 (7)
N2	0.0366 (8)	0.0493 (10)	0.0392 (8)	-0.0061 (7)	0.0044 (7)	-0.0041 (7)
N3	0.0422 (9)	0.0542 (11)	0.0384 (9)	-0.0065 (7)	0.0015 (7)	-0.0031 (7)

Geometric parameters (Å, °)

Cd1—Cl1	2.4591 (7)	C13—C14	1.367 (4)
Cd1—Cl2	2.5604 (6)	С13—Н13	0.9300
Cd1—Cl2 ⁱ	2.6132 (6)	C14—H14	0.9300
Cd1—N1	2.4636 (16)	C15—N1	1.478 (3)
Cd1—N2	2.2819 (16)	C15—C16	1.491 (3)
C1—C6	1.363 (4)	C15—H15A	0.9700
C1—C2	1.365 (4)	C15—H15B	0.9700
C1—H1	0.9300	C16—N2	1.320 (2)
C2—C3	1.380 (4)	C16—N3	1.343 (2)
С2—Н2	0.9300	C17—N2	1.390 (2)
C3—C4	1.376 (3)	C17—C18	1.394 (3)
С3—Н3	0.9300	C17—C22	1.400 (3)
C4—C5	1.378 (3)	C18—C19	1.374 (3)
C4—C7	1.518 (3)	C18—H18	0.9300
C5—C6	1.377 (4)	C19—C20	1.387 (3)
С5—Н5	0.9300	С19—Н19	0.9300
С6—Н6	0.9300	C20—C21	1.376 (3)
C7—N1	1.497 (3)	С20—Н20	0.9300
C7—H7A	0.9700	C21—C22	1.386 (3)
С7—Н7В	0.9700	C21—H21	0.9300
C8—N1	1.491 (3)	C22—N3	1.380 (3)
C8—C9	1.503 (3)	C23—C24	1.483 (7)
C8—H8A	0.9700	C23—H23A	0.9600
C8—H8B	0.9700	С23—Н23В	0.9600

C9—C11	1.381 (3)	С23—Н23С	0.9600
C9—C10	1.388 (3)	C24—O1	1.422 (5)
C10—C14	1.384 (4)	C24—H24A	0.9700
C10—H10	0.9300	C24—H24B	0.9700
C11—C12	1.381 (4)	O1—H1A	0.8518
C11—H11	0.9300	Cl2—Cd1 ⁱ	2.6132 (6)
C12—C13	1.374 (4)	N3—H3N	0.8763
C12—H12	0.9300		
N2—Cd1—Cl1	105 92 (5)	C13—C14—H14	120.1
N_2 —Cd1—N1	73 73 (6)	C10—C14—H14	120.1
Cl1—Cd1—N1	99.07 (4)	N1-C15-C16	110.73 (16)
N2-Cd1-Cl2	96 56 (4)	N1-C15-H15A	109 5
Cl1—Cd1—Cl2	110.19 (2)	C16—C15—H15A	109.5
N1—Cd1—Cl2	150.72 (5)	N1—C15—H15B	109.5
N2—Cd1—Cl2 ⁱ	148.17 (5)	C16—C15—H15B	109.5
Cl1—Cd1—Cl2 ⁱ	102.95 (2)	H15A—C15—H15B	108.1
N1—Cd1—Cl2 ⁱ	88.84 (4)	N2—C16—N3	113.18 (19)
Cl2—Cd1—Cl2 ⁱ	85.712 (19)	N2—C16—C15	122.84 (18)
C6—C1—C2	119.2 (2)	N3—C16—C15	123.98 (18)
C6—C1—H1	120.4	N2—C17—C18	130.45 (19)
C2—C1—H1	120.4	N2—C17—C22	109.12 (17)
C1—C2—C3	120.7 (3)	C18—C17—C22	120.37 (19)
С1—С2—Н2	119.6	C19—C18—C17	117.2 (2)
С3—С2—Н2	119.6	C19—C18—H18	121.4
C4—C3—C2	120.7 (3)	C17—C18—H18	121.4
С4—С3—Н3	119.6	C18—C19—C20	121.8 (2)
С2—С3—Н3	119.6	C18—C19—H19	119.1
C3—C4—C5	117.9 (2)	С20—С19—Н19	119.1
C3—C4—C7	121.1 (2)	C21—C20—C19	122.0 (2)
C5—C4—C7	121.0 (2)	C21—C20—H20	119.0
C6—C5—C4	121.1 (2)	С19—С20—Н20	119.0
С6—С5—Н5	119.4	C20—C21—C22	116.5 (2)
С4—С5—Н5	119.4	C20—C21—H21	121.7
C1—C6—C5	120.4 (3)	C22—C21—H21	121.7
С1—С6—Н6	119.8	N3—C22—C21	132.5 (2)
С5—С6—Н6	119.8	N3—C22—C17	105.40 (17)
N1—C7—C4	115.83 (17)	C21—C22—C17	122.0 (2)
N1—C7—H7A	108.3	C24—C23—H23A	109.5
С4—С7—Н7А	108.3	С24—С23—Н23В	109.5
N1—C7—H7B	108.3	H23A—C23—H23B	109.5
C4—C7—H7B	108.3	С24—С23—Н23С	109.5
H7A—C7—H7B	107.4	H23A—C23—H23C	109.5
N1—C8—C9	113.67 (19)	H23B—C23—H23C	109.5
N1—C8—H8A	108.8	O1—C24—C23	112.2 (4)
С9—С8—Н8А	108.8	O1—C24—H24A	109.2
N1—C8—H8B	108.8	C23—C24—H24A	109.2
С9—С8—Н8В	108.8	O1—C24—H24B	109.2
H8A—C8—H8B	107.7	C23—C24—H24B	109.2

C11—C9—C10	117.6 (2)	H24A—C24—H24B	107.9
C11—C9—C8	122.1 (2)	C24—O1—H1A	111.3
С10—С9—С8	120.3 (2)	Cd1—Cl2—Cd1 ⁱ	94.288 (19)
C14—C10—C9	121.1 (2)	C15—N1—C8	113.04 (18)
C14—C10—H10	119.5	C15—N1—C7	109.96 (16)
С9—С10—Н10	119.5	C8—N1—C7	110.16 (17)
C12—C11—C9	121.4 (3)	C15—N1—Cd1	103.08 (12)
C12—C11—H11	119.3	C8—N1—Cd1	113.07 (12)
С9—С11—Н11	119.3	C7—N1—Cd1	107.19 (12)
C13—C12—C11	119.6 (3)	C16—N2—C17	105.01 (16)
C13—C12—H12	120.2	C16—N2—Cd1	113.20 (13)
C11—C12—H12	120.2	C17—N2—Cd1	140.84 (12)
C14—C13—C12	120.2 (3)	C16—N3—C22	107.20 (16)
C14—C13—H13	119.9	C16—N3—H3N	122.6
C12—C13—H13	119.9	C22—N3—H3N	129.2
C13 - C14 - C10	119.9 (3)		/
	0.2 (5)	C16 C15 N1 C41	42.2 (2)
$C_0 = C_1 = C_2 = C_3$	0.3(3)	C10-C13-N1-Cd1	42.5 (2)
C1 - C2 - C3 - C4	0.3(4)	C9 = C8 = N1 = C13	70.0(2)
$C_2 = C_3 = C_4 = C_5$	-1.1(4)	C9 = C8 = N1 = C7	-100.53 (19)
$C_2 = C_3 = C_4 = C_7$	-1/8./(2)	C9 = C8 = N1 = Cd1	-46.6 (2)
$C_3 - C_4 - C_5 - C_6$	1.3 (4)	C4 = C7 = N1 = C15	59.5 (3)
C7—C4—C5—C6	1/9.0 (2)	C4 - C7 - N1 - C8	-65.7 (2)
$C_2 = C_1 = C_6 = C_5$	-0.1 (4)	C4—C/—NI—CdI	170.91 (17)
C4—C5—C6—C1	-0.7 (4)	N2—Cd1—N1—C15	-30.53 (12)
C3—C4—C7—N1	-90.2 (3)	Cl1—Cd1—N1—C15	73.52 (13)
C5—C4—C7—N1	92.3 (3)	Cl2—Cd1—N1—C15	-104.44 (14)
N1—C8—C9—C11	-97.0 (3)	Cl2 ⁱ —Cd1—N1—C15	176.45 (12)
N1-C8-C9-C10	81.7 (3)	N2—Cd1—N1—C8	91.85 (14)
C11—C9—C10—C14	4.5 (4)	Cl1—Cd1—N1—C8	-164.09 (13)
C8—C9—C10—C14	-174.2 (2)	Cl2—Cd1—N1—C8	17.94 (19)
C10-C9-C11-C12	-4.2 (4)	Cl2 ⁱ —Cd1—N1—C8	-61.17 (14)
C8—C9—C11—C12	174.4 (2)	N2—Cd1—N1—C7	-146.56 (15)
C9—C11—C12—C13	0.5 (4)	Cl1—Cd1—N1—C7	-42.50 (14)
C11-C12-C13-C14	3.0 (4)	Cl2—Cd1—N1—C7	139.53 (12)
C12-C13-C14-C10	-2.7 (4)	Cl2 ⁱ —Cd1—N1—C7	60.42 (13)
C9—C10—C14—C13	-1.1 (4)	N3-C16-N2-C17	-2.8 (2)
N1-C15-C16-N2	-36.4 (3)	C15-C16-N2-C17	176.9 (2)
N1-C15-C16-N3	143.2 (2)	N3—C16—N2—Cd1	-174.02 (14)
N2-C17-C18-C19	175.3 (2)	C15-C16-N2-Cd1	5.6 (3)
C22—C17—C18—C19	-1.6 (3)	C18—C17—N2—C16	-175.9 (2)
C17—C18—C19—C20	2.0 (4)	C22—C17—N2—C16	1.3 (2)
C18—C19—C20—C21	-1.1 (4)	C18—C17—N2—Cd1	-8.7 (4)
C19—C20—C21—C22	-0.2 (4)	C22—C17—N2—Cd1	168.51 (16)
C20—C21—C22—N3	-176.4 (2)	Cl1—Cd1—N2—C16	-80.52 (14)
C20—C21—C22—C17	0.5 (3)	N1—Cd1—N2—C16	14.50 (14)
N2—C17—C22—N3	0.5 (2)	Cl2—Cd1—N2—C16	166.27 (14)
C18—C17—C22—N3	178 0 (2)	$Cl2^{i}$ —Cd1—N2—C16	73 84 (17)
N2-C17-C22-C21	-1771(2)	C12 Cu1 - N2 - C10	112 0 (2)
112 017 022 - 021	1 / / . 1 (4)	-112 - 112 - 112	114.7 (4)

C18—C17—C22—C21	0.4 (3)	N1—Cd1—N2—C17	-152.0 (2)
N2—Cd1—Cl2—Cd1 ⁱ	-148.11 (5)	Cl2—Cd1—N2—C17	-0.3 (2)
Cl1—Cd1—Cl2—Cd1 ⁱ	102.23 (3)	Cl2 ⁱ —Cd1—N2—C17	-92.7 (2)
N1—Cd1—Cl2—Cd1 ⁱ	-79.91 (9)	N2—C16—N3—C22	3.2 (2)
Cl2 ⁱ —Cd1—Cl2—Cd1 ⁱ	0.0	C15—C16—N3—C22	-176.5 (2)
C16—C15—N1—C8	-80.2 (2)	C21—C22—N3—C16	175.1 (2)
C16—C15—N1—C7	156.29 (18)	C17—C22—N3—C16	-2.1 (2)
Symmetry codes: (i) $-x+1$, $-y$, $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot$
O1—H1A····Cl1 ⁱⁱ	0.85	2.33	3.157 (2)	164
N3—H3N…O1	0.88	1.90	2.772 (3)	174
Symmetry codes: (ii) $x+1/2, -y+1/2, z+1/2$.				

Fig. 2

